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Lyapunov exponents from geodesic spread in configuration space
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The exact form of the Jacobi–Levi-Civita~JLC! equation for geodesic spread is here explicitly worked out
at arbitrary dimension for the configuration space manifoldME5$qPRNuV(q),E% of a standard Hamiltonian
system, equipped with the Jacobi~or kinetic energy! metric gJ . As the Hamiltonian flow corresponds to a
geodesic flow on (ME ,gJ), the JLC equation can be used to study the degree of instability of the Hamiltonian
flow. It is found that the solutions of the JLC equation are closely resembling the solutions of the standard
tangent dynamics equation which is used to compute Lyapunov exponents. Therefore the instability exponents
obtained through the JLC equation are in perfect quantitative agreement with usual Lyapunov exponents. This
work completes a previous investigation that was limited only to two degrees of freedom systems.
@S1063-651X~97!03010-9#
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In recent papers@1,2# we have investigated the dynamic
stability properties of two-degrees of freedom Hamiltonia
(N52) within the framework of a geometric formulation o
dynamics that makes use of Riemannian geometry. AN
52 the phase space structure of a system can be investig
in great detail. In fact the use of Poincare´ surfaces of section
makes it possible to identify the initial conditions that orig
nate regular and chaotic motions in the system, so that
qualitative description as well as the measurement of ch
by Lyapunov exponents can be thoroughly compared w
the outcome of the Riemannian based approach. Howe
the N52 case is a very special case, at least from the g
metric point of view; in fact there is only one curvature fun
tion that—at each point—plays the role of scalar curvatu
Ricci curvature, and sectional curvature. Therefore,in the
absence of any rigorous resultto extend at arbitraryN the
validity of what we found atN52, we have explicitly stud-
ied the large-N case and the results are given in the pres
paper. There is also another motivation for the present w
We have recently exploited the Riemannian geometriza
of Newtonian dynamics toanalytically compute the larges
Lyapunov exponents in large-N Hamiltonian systems@3–5#
and, despite some necessary approximation, the analyti
sults are in strikingly good agreement with the numeri
results. However, while applying this theory to lattice-w4

models @6# we have encountered some difficulties that a
now demanding adequate improvements. For the sak
simplicity, all the analytic computations were done in
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enlarged configuration space-time endowed with the Eis
hart metric ~see below!. In this framework, the mentioned
improvements can hardly be imagined and a richer geome
structure, as is the case of (ME ,gJ), is needed~we shall
better explain why in the sequel!. Therefore it is of primary
importance to check whether the JLC equation on (ME ,gJ)
fully accounts for the degree of chaoticity of the dynamics
arbitraryN. In principle this might not be the case: the JL
equation only describeslocal instability, whereas chaos
could crucially depend upon someglobal property of phase
space. As a simple example, let us think of the Bunimov
stadium~a portion of the plane, bounded by two half-circle
joined by two parallel lines, where a free particle bounce!,
where the shape of the boundary, being responsible for
mismatch between focusing and defocusing of trajector
makes the system chaotic. In the case of Hamiltonian flo
at N52, something similar happens when a trajectory a
proaches the conditionV(q)5E: the curvature function be
comes very large because it contains powers of the qua
@E2V(q)#21 and, correspondigly, the configuration spa
trajectories look as if they were reflected by theV(q)5E
boundary. At largeN such a stadiumlike effect isno longer
present and@E2V(q)# fluctuates around an average val
with a negligible probability of getting close to zero, ther
fore ‘‘global’’ effects—if any—should work in a subtle
way.

We consider those systems that are described by the
grangian function~all the indexes run from 1 toN5dimME!

L~q,q̇!5
1

2
aik~q!q̇i q̇k2V~q!, ~1!

whereaik is the kinetic energy tensor

-
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56 4873BRIEF REPORTS
aikq̇i q̇k52~E2V!52W. ~2!

Maupertuis’ least action principle

dE
g
2W dt5dE

g
$2@E2V~q!#aikdqidqk%1/2[dE

g
ds50

~3!

variationally defines the natural motions among all the iso
ergetic asynchronous pathsg joining two fixed end points.
Hence the arc length of configuration space is expresse
ds252@E2V(q)#aikdqidqk, whencegik52@E2V(q)#aik .
In local coordinates the geodesics on a Riemannian man
are solutions of the equations

d2qi

ds2 1G jk
i dqj

ds

dqk

ds
50, ~4!

wheres is the proper time andG jk
i are the Christoffel coef-

ficients of the Levi-Civita connection associated withgik .
By direct computation, usinggik52@E2V(q)#d ik , G jk

i

5(1/2W)d im(] jWdkm1]kWdm j2]mWd jk), and ds2

54W2dt2, it can be easily verified that the geodesic equ
tions yield

d2qi

dt2
52

]V

]qi , ~5!

i.e., Newton’s equations derived from the Lagrangian~1!.
These equations of motion can be also seen as geodes
other manifolds@7# besides (ME ,gJ). Among the others, we
mention a structure, defined by Eisenhart@8#, that we have
considered with particular emphasis in our previous pap
@3–6,9#. In this case the ambient space is an enlarged c
figuration space-time M3R2, with local coordinates
(q0,q1, . . . ,qN,qN11), where (q1, . . . ,qN)PM , q0PR is
the time coordinate, andqN11PR is a coordinate closely
related to Hamilton action; Eisenhart defines a pseu
Riemannian nondegenerate metricgE on M3R2 as

dsE
25gmndqm

^ dqn5ai j dqi
^ dqj22V~q!dq0

^ dq01dq0

^ dqN111dqN11
^ dq0. ~6!

Natural motions are now given by the canonical projectionp
of the geodesics of (M3R2,gE) on configuration space
time: p:M3R2→M3R. However, among all the geodesic
of gE the natural motions belong to the subset of those g
desics along which the arclength is positive definite

ds25gmndqmdqn52C2dt2. ~7!

The stability of a geodesic flow is studied by means of
Jacobi–Levi-Civita~JLC! equation for geodesic spread.
local coordinates the JLC equation reads

¹2Jk

ds2 1Ri jr
k dqi

ds
Jj

dqr

ds
50, ~8!
-
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where Ri jr
k are the components of the Riemann-Christof

curvature tensor. In previous papers we have investigated
relationship between geometry and chaos mainly using
Eisenhart metric described above. The JLC equation
been used in its exact form with Jacobi metric, only in t
case of two degrees of freedom systems@1,2#: a perfect
agreement between the description of instability provided
the JLC equation and the description of instability provid
by more conventional methods~Lyapunov exponents, Poin
carésurfaces of section! has been found. Let us now exten
our investigation to arbitraryN. To this purpose we use
natural chart ~in previous works we adopted paralle
trasported frames!. Let us begin by computing the left-han
side of Eq.~8!. From (¹Jk/ds)5dJk/ds1G i j

k (dqi /ds)Jj we
have

¹2

ds2 Jk5
d

ds S dJk

ds
1G i j

k dqi

ds
Jj D1G rt

k dqr

ds S dJt

ds
1G i j

t dqi

ds
Jj D

~9!

trivial algebra and the use of Eq.~4! leads to

¹2

ds2 Jk5
d2Jk

ds2 12G i j
k dqi

ds

dJj

ds
1~] rG i j

k 1G rt
k G i j

t

2G t j
k G ri

t !
dqr

ds

dqi

ds
Jj , ~10!

where] i[]/]qi . Then, we use the expression for the co
ponents of the Riemann-Christoffel tensor to obtain

Ri jr
k dqi

ds
Jj

dqr

ds
5~G ri

t G j t
k 2G j i

t G rt
k 1] jG ri

k 2] rG j i
k !

dqr

ds
Jj

dqi

ds
~11!

and by substituting Eqs.~10! and~11! into Eq.~8! we finally
get

d2Jk

ds2 12G i j
k dqi

ds

dJj

ds
1S ]G ri

k

]qj D dqr

ds

dqi

ds
Jj50, ~12!

which has general validityindependentlyof the metric of the
ambient manifold. Let us now derive its explicit form in th
case of Jacobi metric. This metric is a conformal deformat
of the pure kinetic energy metric, i.e., (gJ) i j 5e22 fai j . As
we are mainly interested in studying standard Hamilton
systems,ai j 5d i j is assumed. For a conformal metric (gJ) i j
5e22 fd i j one readily obtains the following expression f
the Christoffel coefficients: G i j

k 52d j
kf ,i2d i

kf , j1d i j f ,k,
where f ,i5] i f [] f /]qi . Hence Eq.~12! is transformed into

d2Jk

ds2 22
d f

ds

dJk

ds
22

dqk

ds

d

ds
~ f , j J

j !12 f ,k

dqi

ds
d i j

dJj

ds

1 f ,k jJ
je2 f50 ~13!

and, using the relationds5e22 fdt, we can express it in
terms of the physical timet instead of the proper times:
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d2Jk

dt2
12S f ,kd i j

dqi

dt
2 f , j

dqk

dt D dJj

dt

1S f ,k je
22 f22 f , j i

dqi

dt

dqk

dt D Jj50, ~14!

wheref ,i j 5] i j
2 f . Finally, as the Jacobi metric corresponds

f 5 1
2 ln@1/2(E2V)#, it is

f ,i5
] iV

2~E2V!
, ~15!

f ,i j 5
] i j

2 V

2~E2V!
1

~] iV!~] jV!

2~E2V!2 , ~16!

e22 f52~E2V!, ~17!

so that the final expression for the JLC equation for (ME ,gJ)
is

d2Jk

dt2
1

1

E2V S ]kVd i j

dqi

dt
2] jV

dqk

dt D dJj

dt

1
1

E2V F ~E2V!]k j
2 V1~]kV!~] jV!

2S ] i j
2 V1

~] iV!~] jV!

E2V D dqi

dt

dqk

dt GJj50. ~18!

Let us now give the explicit form of Eq.~12! in the case of
(M3R2,gE), the enlarged configuration space-tim
equipped with Eisenhart metric. One easily finds@9# that
only the following Christoffel coefficients do not vanish
G00

i 5(]V/]qi) and G0i
N115(2]V/]qi), hence, using also

ds25(dq0)25dt2 ~as we can set 2C251!, we get

d2Jk

ds2 1
]2V

]qj]qk
Jj50 ~19!

for k, j 51, . . . ,N. The two other components,J0 andJN11,
do not contribute to the norm ofJ and do not enter the
evolution equation~19!, therefore they can be neglected@9#.

It is a very interesting fact that the JLC equation~8! yields
the usual tangent dynamics equation~19! when explicitly
worked out for the Eisenhart metric onM3R2. On one
hand, we can expect that at leastqualitativelyEq. ~18! will
give similar results to those obtained with equation~19!, i.e.,
the usual Lyapunov exponents. On the other hand, the
equations~18! and ~19! are so different that it is unclea
whether aquantitativeagreement also has to be expecte
Geodesics of (M3R2,gE) project themselves onto geodesi
of (ME ,gJ): for this reason unstable~stable! geodesics of
(M3R2,gE) must correspond to unstable~stable! geodesics
of (ME ,gJ). However, no theoretical result guarantees t
the average growth rates of the solutions of Eqs.~18! and
~19! must coincide. We have addressed this point by num
cally computing the average growth rates of the solutions
Eqs. ~19! and ~18!—let us denote them byl1 and l1

JLC,
respectively—for a given Hamiltonian flow with a larg
number of degrees of freedom;l1 is the conventional larges
Lyapunov exponent.
o

.

t

i-
f

Numerical computations have been performed for a fl
described by the Hamiltonian

H~p,q!5(
i 51

N
1

2
pi

21(
i 51

N F1

2
~qi 112qi !

21
m

4
~qi 112qi !

4G .
~20!

This is the well-known Fermi-Pasta-Ulamb model @10#, a
paradigmatic model of nonlinear classical many-body s
tems extensively studied over the last decades and at
origin of remarkable developments in nonlinear dynam
~for instance, the transition between weak and strong ch
was discovered in this model@11,12#!.

The numerical integration of the equations of motion~5!
derived from the Hamiltonian~20! has been performed b
means of a third order bilateral symplectic algorithm@13#,
and the integration of the two stability equations~19! and
~18! has been done by means of the same bilateral algori
and of a fourth-order Runge-Kutta scheme, respectiv

FIG. 1. l1
JLC(e) computed atN5128 is represented by ful

circles and computed atN5256 by full triangles. The larges
Lyapunov exponentl1(e) is represented by open circles (N
5256) and open squares (N52000). The solid line is the analytic
prediction forl1(e) given in Ref.@4#.

FIG. 2. The relaxation patternsl1
JLC(t) andl1(t) are compared

at different values of the energy density. Full symbols den
l1

JLC(t) and open ones denotel1(t). From top to bottom«5392,
«51, «50.075.
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Both l1(e) andl1
JLC(e) have been obtained by means of

standard algorithm@14#, i.e., computing

l1~ tN!5
1

NDt (
n51

N

lnS iJ~ tn!i21i J̇~ tn!i2

iJ~ tn21!i21i J̇~ tn21!i2D , ~21!

wheretn5nDt, Dt is some time interval,tN is the final time
such thatl1 has attained a good ‘‘asymptotic’’ value.

In Fig. 1 the values ofl1
JLC(e) are compared to the value

of l1(e) and to an analytically predicted curve forl1(e)
~see Ref.@4#!; e5E/N is the energy density. As the numer
cal effort to integrate Eq.~18! is heavier than that required t
integrate Eq.~19!, we computedl1 for N5256 and N
52000 coupled oscillators, whereas we computedl1

JLC for
N5128 andN5256; at N5256 we have only two points
that have been computed just as a stability check. The ex
lent agreement between the outcomes of the two stab
equations is evident.

In Fig. 2 the relaxation patterns ofl1
JLC(t) and of l1(t)

are also displayed. These are very similar at high ene
density, whereas they show some separation at low en
density: the final values are nevertheless always in very g
agreement. These results mean that Eqs.~18! and ~19! are
not—loosely speaking—the ‘‘same’’ equation written in tw
d

el-
ty

y
gy
d

different forms. As a matter of fact, Eq.~19! is contained in
Eq. ~18! so that one could think that in some nontrivial wa
the extra terms cancel out. This is not the case. There are
distinct equations to describe the same phenomenon. T
areequivalentfor what concerns the computation of the a
erage instability growth rates of Hamiltonian flows, but th
can benot equivalentfor the further development of the the
oretical approach where the average curvature propertie
the ‘‘mechanical’’ manifolds are linked to the average cha
ticity of the dynamics through an effective stability equati
independent of the dynamics itself@4#. In fact Eq. ~18! is
valid on (ME ,gJ), a manifold which has better mathematic
properties with respect to (M3R2,gE): (ME ,gJ) is a proper
Riemannian manifold, it is compact, all of its geodesics
in one-to-one correspondence with mechanical trajector
its scalar curvature does not identically vanish as is the c
of (M3R2,gE), it can be naturally lifted to the tangen
bundle where the associated geodesic flow on the subm
folds of constant energy coincides with the phase space
jectories.

In conclusion, we have seen that the results found for
N52 case@1,2# generalize to arbitraryN, hence the phe-
nomenological information given by Lyapunov exponen
can be retrieved on the manifold (ME ,gJ) at arbitrary di-
mension by means of the JLC equation for geodesic spr
,
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